
International Journal of Theoretical Physics, Vol. 17, No. 1 (1978), pp. 5-20 

Gravitational Radiation in Asymptotic de Sitter Space 

Larry L. Smalley 

The University of Alabama in Huntsville, Huntsville, Alabama 35807 

Received March 13, 1978 

A solution of the gravitational field equations is found by using an axially 
symmetric metric which is asymptotically a de Sitter space metric. We use 
the general approach of Bondi, van der Burg, and Metzner as applied to the 
asymptotic fiat-space case and search for the necessary conditions for 
gravitational radiation in asymptotic de Sitter space. We find that the 
character of the gravitational radiation, if it exists at all, is considerably 
different from that obtained in the case of asymptotic fiat space. 

1. I N T R O D U C T I O N  

The investigation and analysis of  gravitational radiation in different 
gravitational theories and in conventional theories with alternate boundary 
conditions have received indirectly a new impetus from the parametrized 
post-Newtonian (PPN) analyses of  gravitational theories (Will, 1974a). 
Although an investigation of gravitational radiation seems somewhat remote 
from the PPN analysis of  gravitational theories, its importance as a definitive 
test between theories is just now being recognized. Part  of  the reason for this 
budding importance comes from a partial failure at the level of  the PPN 
approximation to distinguish between alternate and viable theories of  gravita- 
tion (Will, 1974b). One should point out that recent experiments tend to 
favor the Einsteinian theory over alternate macroscopic gravitational theory 
(Shapiro et al., 1976; Williams et al., 1976). Nevertheless, attempts to firmly 
root Einstein's general theory to experimental results has resulted in a 
plethora of theories that agree experimentally in the PPN approximation. 
Deviations between some of the theories are expected only in the "pos t"  
PPN approximation (Lee and Lightman, 1973). According to Will (1974a) 
it is in these higher orders that one begins to expect contributions to gravita- 
tional radiation. 

0020-7748/78/0100-0005505.00/0 �9 1978 Plenum Publishing Corporation 

5 



6 Smalley 

In general, the PPN approximation is an expansion of the metric 
(Lagrangian) to fourth order in the velocity which is small in the neighbor- 
hood of the solar system. In fact, near the sun one expects that the quantities 

o ( x )  ~ v ~ ~ U ( x )  ~ p ( x )  
p 

where p is the density, U is the potential, and p is the pressure, are all of the 
same order of magnitude. Far from the solar system, we expect the metric to 
take its Minkowskiian form: g,v = ( - 1 ,  1, 1, 1). (Greek symbols represent 
the space-time components 0, 1, 2, 3, whereas Latin symbols represent spatial 
components 1, 2, 3.) Thus if one carried out a consistent approximation 
scheme to successively higher orders, gravitational radiation effects would 
occur in the seventh order (Will, 1974c). At this point we must ask the ques- 
tion: to what order is the PPN approximation still valid (i.e., does not diverge). 
At present, this remains an open question. Thus we are forced to check directly 
the contributions from gravitational radiation. A clear understanding of 
gravitational radiation seems necessary in order to interpret such an 
expansion. 

A general unsolved problem exists with the understanding of gravita- 
tional radiation in the interpretation of coordinates in relativistic theories. 
Although the covariance of the equations seems to indicate an independence 
of the choice of coordinates in calculations, it does make a difference when 
one obtains the "physical components" necessary for comparison with 
experiment (Truesdell, 1953). For instance, the formulation of gravitational 
radiation in one frame of reference (theory) may parrot the properties of 
gravitational radiation, but in the end, fail the test of coordinate indepen- 
dence. This might occur if, for instance, a spacelike coordinate could become 
timelike and vice versa as inside the horizon of a blackhole (Misner, Thorne, 
and Wheeler, 1973). 

In order to shed some light on these questions, we have investigated the 
gravitational radiation conditions in an asymptotic de Sitter space, a theory 
conformally equivalent to general relativity. Physically, this is an interesting 
problem for at least two reasons: 

(i) The results will help demonstrate the coordinate independence of gravita- 
tional radiation, i.e., a physical interpretation useful in the detection of 
gravitational radiation. 

(ii) It leads directly to an investigation of the group structure imposed on 
space-time by an asymptotic de Sitter universe. 

The second case has its importance in the possible classification schemes for 
elementary particles (cf. Aghassi, Roman, and Santille, 1970; Tait and 
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Cornwell, 1971). Ironically, the importance of de Sitter space considerations 
may be in the small, i.e., for microscopic theories of gravitation in which one 
considers the gauge formalism of gravitation with local de Sitter invariance 
(Hsu, 1977). The former is a necessary step towards correctly quantizing the 
gravitational field (Sachs, 1962; Pirani, 1964). 

Gravitational radiation in asymptotic spaces has been investigated by 
many, notably the works of Bondi, Van der Burg and Metzner (BVM) (1962) 
in an empty, asymptotically flat space (i.e., asymptotically Minkowskiian) and 
of  Hawking in a dust-filled, asymptotic conformally fiat Friedmann universe 
with negative curvature (Hawking, 1968). Here we investigate a matterless 
but asymptotic de Sitter universe. For completeness, we include the effect of 
the cosmological constant. We use the method of the BVM empty-space 
approach, which is well suited for this type of investigation. 

In Section 2 we develop the Ricci tensor in de Sitter space. In Section 3 
the de Sitter space field equations are developed in terms of a "natural"  set of 
coordinates and then are solved in Section 4 by series expansion. In Section 5 
we discuss the asymptotic de Sitter space constraints on our solution and give 
our conclusions in Section 6. 

2. RICCI TENSOR IN DE SITTER SPACE 

To use the BVM method, it is necessary to transform their metric into a 
de Sitter space metric. This can be done through a conformal transformation 
of the metric (Eisenhart, 1926; Gi~rsey, 1964) 

g 'B  = e2~g~ (2.1) 
where 

4R 2 
= In 4 R  2 _ u2 _ 2ur  (2.2) 

where R is the "radius" of de Sitter space, u = t - r is the null coordinate, 
and r is the ordinary radial coordinate. Since the BVM metric is axially 
symmetric, so will the de Sitter space metric be axially symmetric. Following 
the method of  BVM, we obtain the main field equations 1 

R~I = 4[/31 - (1/2)r7~21 + 2ch~ - 4131ch - 2~h 2 (2.3) 
F 

1 The  fo l lowing misp r in t s  or  omiss ions  occur  in Bond i  et al. (1962). In  the  list o f  th ree  
index  s y m b o l s :  ro~ let e 2<e-r) --+ e 2Cy-B), r~3 let e -2~-r  --+ e -2Cy+e), a n d  the  correc t  
order  o f  expans ions  for I~oa3 = - - (co/r )  - (Co - �89 3, I'~2 = r(co - 1) + 
( 2 M  - c22 - 2c2 co t  0 + 2c cot  2 0 + 2CCo). I n  the  s u p p l e m e n t a r y  cond i t ion  for Roo 
replace the  t e rm  f l2UV~/r--~ f l2U~V/r .  The  c o n s t a n t  o f  in tegra t ion  in equa t ion  (3.21) 
is N + ~ccz + ~c 2 cot  0 ins tead  o f  the  N discussed in the  text.  The  t e rm  8c(3cc2) shou ld  
be  replaced  by  8c(3cc2 cot  0) in equa t ion  (3.22). 
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2/32 2y l  co t  0 )  - 2 r Z R 1 2  = (r~e2<r-r - 2r2 /3~2 - y~2 + 2 y l y 2  - -  - 7 - "  - -  

+ 4r2(~2 + �89 (2.4) 

- e2CB + ~; �89 e)  U ~ 2  /~22 e 2 ( a - r )  + Roo ~ = 2V1 + - r2Ux2 - 4rU2 

- r2U~ c o t  0 - 4 r U c o t  0 + 2e 2~a-"  

• [ -  1 - (3y 2 - -  /32) co t  0 - -  Y22 + fl22 + fi2 2 

+ 2e~(n -/3~)1 - 8r~o 

+ (2rV~ + 6 V - 4r2U2 - 4r 2 U co t  0)~1 

+ 6rVcrll - 4r2cqo - 8r2~o~1 (2.5) 

e2(r  +z) _ 

s in  2 0 Raa = 2r(ryoh + (1 - rye)V1 - (rr= + y~)V - r(1 - ryOU2 

- r2(cot  0 - y2)U~ + r(2ry~2 + 2?2 + ry~ co t  0 - 3 co t  O)U 

x e 2r  1 - (3y2 - 2/32) co t  0 - y22 + 2y2(y2 - /32)] 

- ao(4r - 2r2yl )  + 3Vrall - 2r=ao, - 4r2aoCrl 

- ~ q ( - 2 r 2 y o  + 3 r 2 U c o t  0 - 2 r 2 y 2 U -  3 V  

+ 2 r y x V -  rV~ + r2U2) (2.6)  

T h e  s u p p l e m e n t a r y  f ield e q u a t i o n s  b e c o m e  

Ro2 =/302 - Yo2 + 29'oe2 - 2yo co t  0 - U(/322 + 2/322 - 2/3r + / 3 2  c o t  0) 

V,2 V2 V9 + r2e2,,_a)[~ UUI2 + 3UU2 
- 2--7 + ~7 ~ + (r~ - / 3 1 ) - 7  r 

+ (29,2 - fi2)UU~ + UzU2 U n V  
2r r 2 

y ~ U V  + @1 - /3~)U~V + ylUV~ y~UV 2y2U 2 
r 1 "2 "~ r 

uv1 + 2u~v 

U +  

I [ ) - 2al -fir +r2e2r U + r - Y o -  U 2 - y 2 U  + 2r JJ 

+ Ue2~y-B)[-3Vrcq 2 + 2rZa~o + 4re%a1 + 2r% 

+ a~(-rV~ - V + r2U2 + r 2 U c o t  0)] (2.7)  
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g o 0  = - -  

2~o~ V VV~I B~x V ~ ~ V 2 I~ VV~ Vo - 2~oV 
r 2r 2 r 2 r ~ r 2 

+ 2[~2UV + ~ U ~ V  + ~ U ~ V  + 213~UV~ 
r 

2UVz 

F 2 

2 ~ U V  U~V U2VI 
+ r ~ ~ + 2r 

r 2 
U1V2 2vxUV~ 2 ~ o 2 U -  2~oU2 + 2),o2U + 2~,oU2 

2r r 

where 

UVl~ 
+ Uo~ + UV~ + U~ ~ + 2 ( ~ , ~  - ~)uv~ + 

r 

+ ( 2 M  - 2 ~ y ~  + ~ ) u  ~ + 2~o ~ 

( uv uv~ ~ u v )  
- cot 0 2 ~ o U -  2 ~ o U -  Uo - UU~ - y2U ~ + 2r 2 2r 

2 U U l l V  
- 2UU~U2 - 2~,~2U 3 - 7 r 2 U  a - 3r2U2U~ + 2B2U2U~ + -----7--- 

~ ~ IU2V  4UU1V UU1V + ~11U2V + ~IU2VI + r 2 
+ r2 + 2 (~  - fi~) r r r 

3U~U2 ~ U ~ U ~ +  U2V~ U~2V U2(U~ + U ) ] 
r - - 7 -  + 2"-'-7- - 7 + ~'~ U cot 0 

1 e2(~_~)[V~2 2fl2~V 2~ + �89 - ~-~ + + (2fi2 + 

4~ _ 2~o(2~o + V Vl f l rV )  + cot 0)(112 + 2/~2V)] + ~-  2r 2 2r 

- 2 % r 2 e 2 ( ~ - ~ ) U ( u l + U +  v I U ) -  2 ~ { V ~  
7 

+ ~ I V  2 UV2 fl2UV + r2eS<y_B) [ UU~V 
r 2 2r r [ r 

V y l V  + ~o + + U 2 02 + ~2U r2 r 

• [ - 3 V r o l  2 + 2r2~1o + 4r2%cq + 2r~o 

+ ~ l ( - r V 1  + r2U2 - V + r2Ucot  0)] 

~oV V 2 VV1 
r 2r 3 + 2r ---~- 

r2 U2e2~ e -  2a 
! r 2 

(2.8) 

= e ~ = B/(B - ~2 _ 2~r) (2.9) 
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and 
B = 4R 2 

For completeness we list the consistency field equation 

2r r r r2 + fl12U + fl2U1 

(2.10) 

+ 2/32U + - ~  + ~ + y~2U + ylU2 + 2y~yo 
r r 

+ r2e2(r_a,(_U__~+ ~_____~2+ 

2 t r  o 
+ 4~ol + 2a1~o + 

r 

e2(B - r) 
r~ [ ~  + 2~@2 - ~ )  + ~ cot o] 

2uu~r + y~uul - ~gu~) 

3V ~12 + ol(U2 + Ucot 0) 
r 

-or [2V1 213rV 2f12U-r2e2(V-~'UU1) (2.11) 
1~ r + 

The origin of the names for the various field equations comes from the way 
in which a solution for the functions y,/3, U, and V occur. An expansion is 
assumed for y at some instant in retarded time u. Equations (2.3)-(2.5) then 
yield solutions for fl, U, and V at the same time. Equation (2.6) then gives the 
time development of 7 from which fl, U, and V can be found for all time. 
Equations (2.7) and (2.8) then represent relations between the expansion 
parameters and initial conditions (integration constants), and finally equation 
(2.11) must be trivially satisfied provided the solution for y, ~, U, and V is 
correct. 

3. DE SITTER SPACE FIELD EQUATIONS 

Since we are working in a cosmological space, in particular de Sitter 
space, the field equations take the generalized form (Weinberg, 1972) 

~,~ - �89 + ar = T.~ (3.1) 

where a is the cosmological constant and T,~ is the energy-momentum 
tensor. In empty space, they become 

/~,. = ~r (3.2) 

so that, in general, the Ricci tensors of Section 2 are not set equal to zero as in 
the BVM case. In order to see how the field equations are solved, we note that 
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the metric  is now 

guy = r = 

[r ~2e_ r24, 2 U2e 2y 4,2e2~ r24, 2Ue 9"y 0 
Ira 

4,2e2B 0 0 0 
r24,2Ue 2~ 0 -r24,2e 2r 0 

o 0 0 -r24,2e -2~ sin 2 0 

Since g l l  = 0, then 

Thus (2.3) becomes 

0 =  

/211 = a&l  = 0 

4[/31 - (1/2)r~12] 
+ 20,11 - 4/310,1 - 20,12 

F r o m  the definition of  0, = In 4,, then 

0,1 = 

and then 
0"11 = 0'12 

Also 

B - u 2 
1 + m l  = B 

Then  (3.5) now becomes 

0 =/31(1 + ral)  - �89 

B - u 2 
- ____if__ 4,/31 - �89 2 

In  te rms of  the variables 

q = r4, 
U t -~--bl 

(3.9) finally becomes (after dropping primes) 

O=fllql(~-~B--U-2-)4,-�89 2 

where derivatives are with respect  to q except for  the funct ion 

8q B - u 2 4,2 
ql -~ Or = B 

(3.3 

(3.4) 

(3.5) 

(3.6) 

(3.7) 

(3.8) 

(3.9) 

(3.10) 

(3.11) 

(3.12) 
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which occurs in the change of  variables 

= q~ ~ (3.13) 
8r 

After using (3.12) in (3.11), we get finally 

fll = �89 ~" (3.14) 

It  should be noted that  this equation is identical in form to the corre- 
sponding BVM equation except that it is now a function of  the new coor- 
dinates q and u. The formal  simplicity in comparison with the BVM case has 
directly motivated our  choice of  "na tura l"  de Sitter space coordinates. Since 
/~12 = A~12 = 0, then in terms of  the variables q and u, equation (2.4) now 
becomes 

(q~e2<~-e)U1)l = 2q2y(2yW2 - ylz - 271 cot 0) + q [ ~ } 1  

(3.15) 

Since 

then (2.5) becomes 

e2(r + .) 
R22e 2("-~) + Raa ~ = - 2q 2e2~h (3.16) 

1 _~[B - u2]2e2CT_~) U = -2q~e2~h = 2 ( ' ~ - - ~ ) 2 ( ~ a V ) 1  + ~ q  ~--'---ff--] 1 

q2 - 

- 4 ( ~ - - - ~ )  (q2Cro)l 

Since 

+ 2e2(a-~)[ - 1 - (3y2 - /32) cot  0 - 722 + fl22 

+/32 ~ + 27~(r2 -/3~)] 

e2(~ ,  + B) _ 

sin 2 0 Ras = --q2e2Bh 

(3.17) 

0.18) 
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then (2.6) becomes 

( ~ _ ~ _ )  2 ( B - u ~ [  2u 2 ( B + u 2 ~  ] (q~ )~  
- q ~ e ~ A =  2 q(q~o)~ + \ B l I B -  u ~ + B ~-ff-=-~Jq - 

4u [ B -  u~\ / B - u ~ \  z 
\ / I T  |q~r~ + I T )  [(1 - qrz)(~V)h B U R 

[B - u2\ 
+ 3 v  0) + 

, ,2[B-u2 '~  . 2q (__.__ff__)),12 U cot 0 + ~ ~ ] ~ , ~ t ~  + z B - u s 

z B - u Z  
+ q (----ff--)7~(U2 + Ucot O ) -  2(~f f -~-) (q~o)~ 

+ e 2(B- ' [-  t - (372 - 2fi2) cot 0 - ~z2 + 2r2(r2 -/32)] (3.19) 

Since/~o2 - A-2UeZTu , then (2.7) becomes 

AqZUe 2' = fizo + q3~o[~] _ q~o)'21 - ~2o + 2~2(q~oyl + 7~ 
\q2] 

-- 2(qao7l + )'o) cot 0 -- U(f122 + 2fi22 + 2f12r2 + fi2 cot O) 

+ (q3ao U1)~ 2(q2ao)~ U 
+ 2q2 + q~ + (roUh 

+ (q2yo)~__ U + 2(q2ao~,~)~ U + (q2~o)w~(q2 Uh + 3 U(q 2 U2)~ 
q2 q q3 2q2 

+ u~u~ + (r~u)~u + (q4U2)a cot 0 (~,2q2U2)~ 
4q~ + qZ + ~1 U 2 cot 0 

(q2U1)l((~3V)2q3 + qZ + 

1 
2 

+ (3.20) 
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Since 

then (2.8) becomes 

4 (B + 2u,  )t((~aV__ )e2a q2UZe~;,) = .~ \ B _ff=--ff~ ] - 4q%z~ - 4%fl~ 

+ ( ~ _ _ ~ ) {  (~aV,oq2 + 2(q~~ + "2((~aV)(qfl~ + 2(q~ a V)(qa%fl~)~ 

U (ck~V] cot O + U~ (~3V] (q~U)~(g~aVz) + U(g~aV~)I 
+ '2  \ q ]~ "-2-\ q /~ 2q ~ 

(q2fl2 U)x($ a V) (fl~ Uq~ ~ V)2 fll U($ s V) 
+ qa + + cot 0 

q q 

qS 

_ 2y~U(g~aV2)q _ ( B B U 2 )  ( V)(ckaV)~z + q2 - -  (r ~(~v)(~ ~vh 
2q 2 

+ qa + q2e2(Y-~) - UUol 2(q2~176 q2 

U(qa~o U~)~ 2 U(Uqacroy~)~ 2U(q U)~yo qZ 2yolU z - q2 - " q 

(q2y2 Ua)I 
- 2U(UU1)2 (ua')2q (qaUa)13q 3 cot 0 - - q2 (YIU)2 Uz 

( ~ _ ~ )  ( )~_~3 u~(~3vh ul~(~v) - y l U  3 cot 0 + (q~U~ V)U + q2 + q2 

(YxU2qc~aV)I 2~U~((~ + 2(qcro[31+ flo)UU~ + 2f12U2U1]) + q2 

- 2qgo(fl~U)2 - 2(floU)2 + 2q~o(ylU)2 + 2(yoU)2 + q~oU12 

+ Uo2 + �89 + (y2U2)2 - 2f12UU2 + (2/322 - 2fl2y=)U 2 

+ 2(q%y~ + yo) 2 - cot O[2(q%fll + rio - q%Yl - Yo)U 

- q ~ o g l  - uo - v u 2  - ~ ,2u  ~] + ~ 

e 2 ( B  - ~,) 
2q ~ [ ~ v ~  + 2 ~ 2 ( ~ v )  + ( 2 ~  - 2~,2 + cot o ) ( # v 2  + 2 ~ v ) ]  

020  
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And finally, since/~ol = A4 2e2B, then (2.11) becomes 

_ _   q  cot0 
_ (q2fi2U)l (q2U2)l + he2B = 2(q o)11 + q2 + 2q2 2q2 

+ 2/31o + 2(q%/31)1 + (71U)2 + 71Ucot 0 + 271(7 o + q~o71)) 

( ~ _ ~ )  2 [ (43V)11 (q/3~43 V)~ _~ 
+ 2q q2 + q ze2(y "J ~ 2q----s 

) ]  e 2(B-y) 
+ (71 - /30UG q~ [ ~  + 2/3d/3~ - 7:) +/3~ cot 0] (3.22) 

Equations (3.14), (3.17), (3.19)-(3.22) are the required de Sitter space 
field equations. 

4. SOLUTION BY SERIES EXPANSION 

The complex of equations (3.14), (3.15), and (3.17) for/3, U, and V, 
respectively, can be solved if we assume a power series expansion in 1/q for 
y of the form 

r - f l u ,  o) + d(u, O) g(u, O) k(u, O) ~ -  q-----F-- + q---~- + q---y-- + O(q -5) (4.1) 

The d term is dropped since it gives rise to a log term in the solution for U. 
The solution for (3.14) then becomes 

fl= H(u,O) (1/4~12 (3/4){g (4/5dfk + o(q_6) (4.2) 

where H is an integration constant. The H term is also dropped since it gives 
rise to a log term in the solution for V. However, Bondi et al. show that this 
term can be reduced to zero by a suitable coordinate transformation. Using 
(4.1) and (4.2) in (3.15), we obtain 

( ~ - ~ ) U = L - ( f 2 +  2fcot 0 ) ~ +  (2N+ 3ff2+ 4f 2 cot 0) 

- ~ ( 1 2 f U  + 13f2f2 + 14f3cotO-6g2 - 12gcotO)~+O(q -5) 

(4.3) 

where L and N are integration constants. 
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Using (4.3) the solution for V from (3.16) is 

. 0)q  
+ (1 + �89 - 2 M -  [N2 + N co t  0 - f 2  2 - 4ff2 cot 0 

- �89 + 8 cot 2 

- �89 + 3g2 - 

+ �89 + s~-Af~ 

1 
o) + a (~ fg  - U0] q 

2g + 6N( f2  + 2fcot  0) + 9ff22 

cot 0 + 16f a cot 2 0 - ]_fa 

1 
+ ~fk~]-~ + O(q -3) (4.4) 

I f  we replace the parameter f - +  C - d / 6 ,  the solution represented by equa- 
tions (4.1), (4.2), (4.3), and (4.4) will then reduce to the asymptotic flat-space 
results in the limit B -+ oo and A -+ 0 provided we put L = 0. In asymptotic 
flat space, the constant of integration L in the equation for U [equation (4.3)] 
must vanish in order to preserve the signature of the metric. In flat space 
V ~ r and U ~ L. Thus 

Ve2B 
goo = -  - U2re 2~ (4.5) 

r 

would eventually change sign for large enough r. But in asymptotic de Sitter 
space, ff3V ~ 0(q 3) and U ~ L, so that foo does not change sign for large q. 
Thus we cannot a priori set L = 0 as in the flat-space case. The solution 
represented by 7,/3, U, and V [equations (4.1)-(4.4)] is then substituted into 
the time development equation (3.19). This yields the following conditions on 
the expansion: 

~f,~ = L2 - L cot 0 (4.6) 

and 

4 ( ~ - f f ~ )  go = 2 f M  - N2 + N cot O + 4k~ - 6gL2 - 4g2L - 6gL cot O 

(4.7) 

With these conditions, the form of ~, is preserved and the development of the 
system is fully determined from initial conditions provided the functions 

f ,  k, N, M, L are known. The consistency field equation (3.22) is trivially 
satisfied to O(q-4) by this solution for 7,/3, U, and V. 

This solution, along with the constraints (4.6) and (4.7), reduces the 
supplementary field equations (3.20) and (3.21) to inverse-square form. 
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Setting these O(q -2) terms equal to zero yields, respectively, the following 
relations: 

- f f o L  cot 0 - 2fof2L - 2ffoL2] + �89 + N cot 0) 

+ �89 - L cot O) - �89 + 3 M  cot 0 - f222 

- 2f22 cot 0 + 2f2 + 4f2 cot 2 0 + 2 fco t  0 + 2fco t  a 0) 

- �89 - 4f22 - 10f2 cot 0 - 2 fco t  2 0 + 4f) 

- �89 - 1~Zff22 + 2]'2 ~ + 9ff2 cot 0 + f2  + ~s__f2 cot 2 0) 

- �89  + ~-ff2 + ~_f2 cot 0) - ~L22f 2 + ~L22f2 (4.8) 

- 3 ( ~ - ~ ) N o  = M2 + ( ~ - - ~ ( 3 f f 2 o  + 4 f foco t  O + fof2) 

- A(g2 + g cot 0) + L 2 ( 2 N  + ~-ff2 + s f 2  cot 0) 

+ L(3N2 + 3 N  cot 0 + 3ff~2 + ]'2 2 + ~ff2 cot 0 

_ 3f2 _ ~ f 2  cot e 0) (4.9) 

where (4.9) was used in equation (4.8) in order to remove the No dependence 
from Eq. (4.8) Thus the time development of  M and N are known provided 
the functions g, L, M, N are given for one value of u a n d f i s  given as a func- 
tion of u and 0. Thus we are at the peculiar point that we need to know 
f,  k, and L as functions of  u and 0. The reason we need to know L is that the 
constraint between f and L from equation (4.6) still leaves L unknown up to 
an arbitrary function of u. We can, however, obtain an equation for ko 
provided we carry out the expansion of the time development field equation 
(3.19) to 0(q-a). But this would still leave L arbitrary. In the next section we 
show how we can make sense of these parameters by considering the asymp- 
totic de Sitter space limit. 

5. A S Y M P T O T I C  DE SITTER SPACE 

An alternate approach to this problem is to require that the solution 
have a definite form in the limit of  q---> oo. This would be, of  course, the 
"asymptot ic"  de Sitter space form of the metric 

4u ~ 4uB B 2 
goo --~ dp 2 - ( B - u2) 2 q2 + ( B - u2) ~ q + ( B - u2) 2 (5.1) 

But f rom the solution (4.1)-(4.4) and the form of ~oo from the metric (3.3), 
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we have 

goo (B =-u~) ~ 4 u ~) a = 3 L 2 q2 

+ ( ' ~  + L2 + L cot 0 - 2 f L O q +  [ 1 +  2f2A 

2f2(B+U2)B2 2 f 2 L 2 + 2 L ( f 2 +  f c o t  0 ) ] +  0 ( ~ ) }  

Thus in the limit of large q, we must have 

4u 2 B 2 [4(B + u 2) 
( a  - u2) ~ = ( B  - u~) ~ \ -~ 

o r  

and similarly, 

~f~ 

(5.2) 

3 L ~ )  (5 .3 )  

A 4 
. . . .  L 2 (5 .4 )  
3 B 

2fL  2 = L2 + L cot 0 

2f~(B + u 2) 
B~ 2f2L 2 + 2L(f2 + f o o t  O) = 0 

B ( B  - u 2) 

(5.5) 

(5.6) 

Equation (5.4) immediately implies that L is independent of the coordinates 
and is therefore an invariant. But this implies with equation (5.5) that either 
L = 0 or f c c  cot 0. The latter case does not have the correct regularity 
properties (Bondi et al.) for 7 as 0 --~ 0. Thus 

L = 0 (5.7) 
a = 12/B 

Finally, equation (5.6) implies that either f ~ 0 or B = uZ/3. Previously we 
ruled out f oc cot 0 on the basis of  regularity for ?,. But from equation (4.6) 
we must now conclude that e i the r f  = 0 or A = 0. The consistent choice is 

f = 0 (5.8) 

Thus by comparison with the asymptotic flat-space case, the character of the 
solution is very different in asymptotic de Sitter space. Indeed, the mass 
aspect [equation (4.8)] now depends on a different "news" function that 
becomes, due to (4.7), (5.7), and (5.8), 

6 
Mo (B - u 2) (N2 + N cot 0) 

24 12 96 
- B go + B - u - - - - ~  N cot 0 + k (5.9) 
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Similarly for No, we find 

BM2 4 
No = 3 ( B  - u 2) + (a  - uS--------3 (g~ + g cot O) (5.10) 

On the other hand, the radiation condition 2 in asymptotic fiat space 
expressed in (q, u) coordinates becomes 

~ (r7 , = ~q (qT) (0  B ? u q )  2uqTB (5.11) 

where 7' is a function of 1/r; so in the limit ofq  -+ 0% the right-hand side will 
not vanish unless f = 0. Thus the condition for radiation in q coordinates 
seems to be satisfied i f f  = 0, and the description of mass or mass loss now 
depends consistently on go in the supplementary conditions, i.e., equation 
(5.9). This unusual behavior for ~, is not totally surprising since here the 
asymptotic limit cannot be described by an empty-space axially symmetric 
static metric, and therefore related to Weyl's form, from which Bondi et al. 
could identify the mass function. 

6. CONCLUSION 

Provided that equation (5.11) is also a correct description for radiation 
in asymptotic de Sitter space, we conclude that radiation will occur in an 
asymptotic de Sitter space but that the nature of the solution requires that the 
1/q dependence of the solution for 7 begin with the O(q -3) term. This implies 
that in the limit B--> oo, we do not obtain the radiative flat-space results. 
That is, the requirement for radiation in asymptotic de Sitter space seems to 
be more restrictive than in asymptotic flat space. 

On the other hand, equation (5.11) may not be an adequate description 
for radiation in a de Sitter space, in which case our solution is an unusual 
curiosity but does not represent radiation. Alternately, we could conclude 
that de Sitter space is devoid of physical meaning. 

We now are ready to return to the argument following equation (5.7) in 
which we concluded that f = 0. This choice was, however, only consistent 
with a solution in asymptotic de Sitter space. Instead, if we had chosen 
A = 0, then B --> co, which would then automatically restrict our solution to 

2 The form of the metric in de Sitter space does not seem to conform to the more general 
"Sommerfeld radiation condition" described by A. Trautman, "Gravitational Waves 
and Radiation," presented at the London Conference on Theories of Gravitation, 1965 
(unpublished), since the limiting metric is not Minkowskiian. We have therefore 
attempted to describe radiation in the more general de Sitter space by carrying over 
directly the form used by Bondi et al. 
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flat space. Thus we are left with the unusua l  consequences of probable  

radiat ion in de Sitter space or no de Sitter space solution at all. 

A C K N O W L E D G M E N T  

I wish to thank Dr. Tom Morgan for suggesting this problem and for his continued 
support during its investigation. 

R E F E R E N C E S  

Aghassi, J. J., Roman, P., and Santille, R. M. (1970). JournalofMathematicalPhysics, 11, 
2297. 

Bondi, H., Van der Burg, M. G. H., and Metzner, A. W. K. (1962). Proceedings of  the 
Royal Society of  London, 269, 21. 

Eisenhart, L. P. (1926). Riemannian Geometry, pp. 89-90. Princeton University Press, 
Princeton. 

Gfirsey, F. (1964). "Introduction to the de Sitter Group," in Group Theoretical Concepts 
and Methods in Elementary Particle Physics, by F. Giirsey, ed., pp. 365-389. Gordon 
and Breach, New York. 

Hawking, S. W. (1968). Journal of  Mathematical Physics, 9, 598. 
Hsu, J. P. (1977). "Gravitation as the gauge theory with maximum four-dimensional 

symmetry," preprint, Space Sciences Laboratory, Marshall Space Flight Center. 
Lee, D. L., and Lightman, A. P. (1973). Physical Review D, 7, 3578. 
Misner, C. W., Thorne, K. S., and Wheeler, J. A. (1973). Gravitation, Chap. 32. Freeman, 

San Francisco. 
Pirani, F. A. E. (1964). In Lectures on General Relativity, Brandeis Summer Institute in 

Theoretical Physics, Vol. 1, A. Trautman et al., eds., p. 368. Prentice-Hall, Engle- 
wood Cliffs. 

Sachs, R. R. (1962). Proceedings of  the Royal Society of  London, 270, 103. 
Shapiro, I. I., Counselman, C. C. III, and King, R. W. (1976). Physical Review Letters, 

36, 555. 
Tait, W., and Cornwell, J. F. (1971). Journal of  MathematicalPhysics, 12, 1651. 
Truesdell, C. (1953). Zeitschrift fiir Angewandte Mathematique und Mechanik, 33, 345. 
Weinberg, S. (1972). Gravitation and Cosmology: Principles and Applications of  the 

General Theory of  Relativity, p. 155. Wiley, New York. 
Will, C. M. (1974a). Experimental Tests of  Gravitation Theories (Unpublished); (1974b). 

"Gravitation Theory," Scientific American, 231, No. 5, 24; (1974c). "The Theoretical 
Tools of Experimental Gravitation," in Proceedings of  the International School of  
Physics, Enrico Fermi Course L VI, Experimental Gravitation, p. 21. Academic, New 
York. 

Williams, J. G., Dicke, R. H., Bender, P. L., Alley, C. O., Carter, W. E., Currie, D. G., 
Eckhardt, D. H., Faller, J. E., Kaula, W. M., Mulholland, J. D., Plotkin, H. H., 
Poultney, S. K., Shelus, P. J., Silverberg, E. C., Sinclair, W. S., Slade, M. A., and 
Wilkinson, D. T. (1976). Physical Review Letters, 36, 551. 


